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1.0 Introduction

This article presents the numerical solution of general second
order initial value problems (I\VVP) of ordinary differential
equations (ODEs) of the form:

y'=1(Xy(X), Y'(X)), Y(X) = Yo, Y (%) = Yo- @

Because a number of problems of the form of (1) are difficult to
solve theoretically, approximate numerical integrations are
routinely used to solve them (1). We often transform these to
equivalent first-order ordinary differential equations and solve
them using the appropriate method. (Lambert, 1973; Fatunla,
1988; Majid et al., 2006; Ogunware & Omole, 2020) are among
scholars who have discussed the reduction technique. Some
authors proposed a linear multistep technique for directly
solving equation (1) to avoid the difficulty of transforming it to
an equal system of first order ODEs. Such authors include
(Awoyemi, 2001; Adesanya et al., 2008; Badmus and Yahaya,
2009; Olanegan et al., 2021). According to (Awoyemi, 2001), in
terms of error estimation, the continuous linear multistep method
outperforms the discrete method, providing a simplified
coefficient for more analytical work at various points and
ensuring easy appropriation of solution at all interior points of
the integration interval. Continuous linear multistep approaches
have been proposed by authors such as (Onumanyi et al., 1994;
Okunnuga, 2008; Omar & Kuboye; 2015), to mention a few. To
obtain beginning values for their approaches, these authors used
the predictor-corrector, block methodology, and Taylor series
expansion. According to (Adesanya, 2011), the predictor-
corrector method is expensive because subroutines are difficult
to build due to the unique procedures required to give starting
values and change the step size, resulting in longer computer
time and more human labor. The correctors are not in the same
order as the predictors that were developed. As a result, the
method's accuracy suffers. A number of authors, including
(Olanegan et al., 2015; Kuboye et al., 2022; Ogunware et al.,
2021; Adoghe et al., 2016), developed the hybrid technique.
While this hybrid approach retains some of the properties of the
continuous linear multistep method, it also shares the property of
utilizing data from points other than the step point with Runge-
Kutta methods (s). This strategy is beneficial for lowering the
step number of a scheme while maintaining zero stability.
Because the predictor-corrector approach fails to meet the above
criteria, another method must be developed to compensate for
the shortcomings. As a result, researchers devised the block
technique to address the predictor-corrector method's drawbacks.
(Adesanya, 2011), (Jator & Li, 2009) and (Omole & Ogunware,
2018) are some of such authors. (Abolarin, et al 2020a) recently
considered developing and implementing a three-step hybrid
block technique for directly solving linear and nonlinear second
order ODEs.
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The aim of this paper is the development and implementation of
a new continuous single step hybrid block linear multistep
method with six-off steps that is zero-stable, consistent, and
convergent for direct and accurate solution of second order
ODEs of initial value problems. The objectives of the research
are to:

(a) adopt Power series as the basis function;

(b) develop a one-step hybrid linear multistep methods
with continuous coefficients for second order initial
value problems;

(c) get additional schemes from (b) that are needed to form
the block.

(d) analyse the basic properties of the developed methods
i.e order, error constant, consistency, zero stability,
convergence and region of absolute stability;

(e) implement and adopt the developed scheme on sample
second order initial value problems.

compare the numerical results with that of existing authors.

2.0  Materials and Methods

We consider power series as an approximate solution to the
general second order ODEs initial value problems of the form
(1) to be

T+u

y)=> ax’. )
j=0

Where a; 'S are the parameters to be determined, 7 and g are

distinct number of collocation and interpolation points.
The second derivative of (2) is obtained as

T+u

y'(x)=2 i(i-Dax"™. 3)
=2

The combination of equations (1) and (3) gives the differential
system below:

T+u

y'() =2 i(i-Dax?=f(xy,y). @)

=2

) . 1 _ .
Collocating (4) at Xnﬂ.,j:O(?)l and interpolating (2)

. 4 .
atX .., ] =— and — gives a structure of non-linear
" 7 7

equation of the form
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Evaluating the continuous method at the non-interpolation points
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(21)
Substituting the schemes that made up the block in (21) into
equations (13) - (20), gives equations (22) — (28)
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y1 yVoth —f —f +—— st — s

17280 " 169344 "7 846720 +1 31360 w2 846720 v 846720 o 31360 r 846720 v

7
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y :yn+h o et r 1’7f 2+7f 37 f 4+7f 5 oonn 6+7fn :

6615 6615 n 2040 mi 735 ne 26460 n; 735 ne 2040 n7 080

} (22)
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2.1 Investigation of the Fundamental Properties of the
Method

Order and Error Constant:

(Lambert, 1973)’s method for finding the order of a numerical
scheme is also applied to equation (21). Hence, the new hybrid
block method is of equal order p=8 with the error constants

represented by the vector,
Co 3625 2119 4223 7221 6167 6637 151 '
0 27334564895232 32552 7537 8745 2352 78331 723

Zero Stability of the Block

Definition: The block is said to be zero stable if the roots

z,$=12,3,...,n of the characteristics  polynomial
p(z) defined by p(z) = det (zA— E) satisfies |ZS| <1 and the

roots |ZS| =1 is simple. See (Kuboye et al., 2022)

For our one-step hybrid method,

A=17°(z-1)=0,2=0,0,0,0,0,0,0

Hence the block is zero stable. See (Abolarin, et al., 2020b)

Consistency

Definition: A block method is said to be consistent if its order is
greater than one.
Consistency property is achieved for the one-step hybrid block
method from the above analysis since the order =8 > 1.

Convergence

Theorem 1. Consistency and zero stability are essential
prerequisites for a linear multistep technique to be convergent,
according to (Lambert, 1973). As a result, because it meets both
the consistency and zero stability requirements, the developed
one-step hybrid block approach, in (21) is convergent.

3.0 Results

Numerical Experiments
The performance of the one-step hybrid approach on certain test
examples is investigated in this section. The results of the test
cases are presented in a tabular format. For computational
objectives, we used MAPLE codes.

Example 1.

We consider Stiefel and Bettis example

y"+y=0.001cos(x), y(0)=1 y'(0)=0
z"+12=0.001sin(x), y(0)=0,y'(0)=0.9995.

1
[ (1 000000)(0000O0 0 1) h:%
01 00O0O00D0 0 000O0OO0C1
0010000 000O0UO0TU O1 The analytical solution of the above problem is given as
A=z/0 0 0 1 0 0 0O|-|0 O O O 0 0 1||=
00001 00lloo0oo000o01 y(X) = cos(x) +0.0005xsin(x),
00000 10/[00000GO01 z(x) =sin(x) —0.0005x cos(x)
i 0 00O0OT 0?11 0 00O0OTP O 1_
Table 1b Showing the Comparison of the Error for Test Example 1 with the Errors In (Adeniran, et al 2015)
X Y Error Z Error Error in (Adeniran et al., | Error in (Adeniran et al.,
2015) for Y 2015) for Z
1/320 9.14736E-11 2.60407E-13 8.5260E-12 2.6041E-13
3/320 2.74421E-10 3.96895E-15 2 5570E-11 9.4100E-13
6/320 5.48819E-10 2.32380E-12 5.1129E-11 2.3610E-12
9/320 8.23146E-10 6.98300E-12 7.6656E-11 4.2601E-12
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12/320 | 1.09736E-09 1.39729E-11 1.0215E-10 6.6375E-12
15/320 | 1.37141E-09 2.32924E-11 1.2760E-10 9.4931E-12
18/320 | 1.64525E-09 3.49399E-11 1.5300E-10 1.2825E-11
21/320 | 1.91884E-09 4.89136E-11 1.7836E-10 1.6635E-11
24/320 | 2.19215E-09 6.52111E-11 2 0365E-10 2.0921E-11

Example 2: We consider a linear second order problem

y” — yl,

y(0)=0, y'(0)=-1, h=0.01

Exact solution: y(X) =1—¢*

Table 2a Showing the Computed Result for Test Example 2

X | Exact Solution Computed Solution Error

0.1 | -0.01005016709511347456000000 -0.01005016708416805754216545690 | 5.831942458E-12
0.2 | -0.02020134003763240403602565 -0.02020134002675581016014392048 | 1.087659387E-11
0.3 | -0.03045453396863439597511297 -0.03045453395351685561243995383 | 1.511754063E-11
0.4 | -0.04081077421092634441660699 -0.04081077419238822675704475792 | 1.853811766E-11
0.5 | -0.05127109639714544740269340 -0.05127109637602403969751763634 | 2.112140771E-11
0.6 | -0.06183654656820985747238019 -0.06183654654535962222468487717 | 2.285023525E-11
0.7 | -0.07250818127792364343102381 -0.07250818125421647905310394989 | 2.370716438E-11
0.8 | -0.0832870676986330494607540500136 | -0.08328706767495855443598775867 | 2.367449502E-11
0.9 | -0.0941742837279446172795538881622 | -0.09417428370521035787289762354 | 2.273425941E-11
1.0 | -0.105170918096515843249964490424 | -0.10517091807564762481170782649 | 2.086821844E-11

Table 2b Showing the Comparison of the Error for Test Example 2 with the Errors in
(Adeyefa & Kuboye, 2020) and (Mohammed, 2011)

X | Error Error in (Adeyefa & Kuboye, 2020) | Errorin
(Mohammed, 2011)

01 | 5-831942458E-12 | 2.095826E-10 2.198000000E-05
0.2 1.087659387E-11 | 2.092718E-09 6.070400000E-06
0.3 1.511754063E-11 | 7.842546E-09 1.005100000E-05
04 | 1.853811766E-11 | 2.009500E-08 1.402530000E-05
05 2.112140771E-11 | 4.199771E-08 1.799340000E-05
0.6 2.285023525E-11 | 7.728842E-08 2.161620000E-05
0.7 2.370716438E-11 | 1.303844E-07 2.799300000E-05
0.8 2.367449502E-11 | 2.064839E-07 3.456100000E-05
0.9 2.273425941E-11 | 3.116817E-07 4.111400000E-05
1.0 2.086821844E-11 | 4.531001E-07 4.765600000E-05

Example 3: We consider a highly stiff initial value problem

y” —

100y,
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y(0) =1, y'(0) =—10, h=0.01
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10x

Table 3 Showing the Computed Result for Test Example 3

X Exact solution Computed solution Error Errorin
(Kamo et al., 2018)

0.01 | 0.904837418035959573 0.904837418000000000 3.5959573E-11 6.6281E-11
0.02 | 0.818730753077981859 0.818730753012906724 6.5075135E-11 1.6280E-10
0.03 | 0.740818220681717866 0.740818220593394240 8.8323626E-11 2.5675E-10
0.04 | 0.670320046035639301 0.670320045929081272 1.06558029E-10 3.4946E-10
0.05 | 0.606530659712633424 0.606530659592111310 1.20522114E-10 4.7320E-10
0.06 | 0.548811636094026433 0.548811635963162930 1.30863503E-10 7.0419E-10
0.07 | 0.496585303791409515 0.496585303653264289 1.38145226E-10 9.6018E-10
0.08 | 0.449328964117221591 0.449328963974365626 1.42855965E-10 1.2232E-09
0.09 | 0.406569659740599112 0.406569659595180011 1.45419101E-10 1.4962E-09
1.00 | 0.367879441171442322 0.367879441025241607 1.46200715E-10 1.8005E-09

Example 4: We consider an application Problem (Mass Spring Motion)
A 128lb weight is attached to a spring having a spring constant of 641b/ft. The weight is started in motion with no initial velocity by
displacing it 6 inches above the -equilibrium position and by simultaneously applying to the weight an external

force, F (t) =8sin(4t) . Assuming no air resistance, compute the subsequent motion of the weight at t:0.01<t <0.10

Consequently, we model this problem into a mathematical equation and then apply our method to compute the motion on the weight
attached to the spring. The following parameters were considered.
m=128, k=64, b=0,and F(t) =0. Thus, the application problem is written mathematically as

2 —
94X, 16x = 2sin(4t), x(0) = —=, x'(0) =0
dt 2
With the analytical solution given below

-1 1 . t
X(t) = —cos(4t) + —sin(4t) — —cos(4t
(t) 5 (41) 10 (4t) 1 (4t)

Table 4 Showing the Computed Result for Test Example 4

X Exact solution Computed solution Error Errorin
(Skwame et al.,
2018)
0.01 | - 0.499598720210476780 - 0.499598720179987850 3.04889300E-11 1.6621E-09
0.02 | - 0.498390193309749496 - 0.498390193248525886 6.12236100E-11 1.1586E-08
0.03 | - 0.496368369740279663 -0.496368369648142767 9.21368960E-11 2.9743E-08
0.04 | - 0.493528526608179370 - 0.493528526485018636 1.23160734E-10 5.6076E-08
0.05 | - 0.489867287968945010 - 0.489867287814718711 1.54226299E-10 9.0504E-08
0.06 | - 0.485382642897099334 - 0.485382642711835214 1.85264120E-10 1.3291E-07
0.07 | - 0.480073961290566858 - 0.480073961074362619 2.16204239E-10 1.8317E-07
0.08 | - 0.473942007364361891 - 0.473942007117385560 2.46976331E-10 2.4110E-07
0.09 | - 0.466988950792027839 - 0.466988950514517973 2.77509866E-10 3.0653E-07
1.00 | - 0.459218375457224013 - 0.459218375149489772 3.07734241E-10 3.7922E-07

1). The conclusions achieved by our method competes
favourably with those reached by (Adeniran et al., 2015) as
shown in Table 1b. The results of our technique when applied to
linear second order ODEs are shown in Table 2a (test example

4. Discussion of Results
Table 1a shows the results of the new one-step hybrid technique
applied to the Stiefel and Bettis second order ODE (test example

KJSET | 50


https://doi.org/10.59568/KJSET-2023-2-1-07

Ogunware et al. / KISET: Vol. 02 Issue 1, (April 2023), 45-52, ISSN: 1958-0641, https://doi.org/10.59568/KISET-2023-2-1-07

2). When compared to their errors, our proposed system
outperforms the methods of (Adeyefa and Kuboye, 2020) and
(Mohammed, 2011). The results of the error comparison are
shown in Table 2b. In Table 3, we considered and solve a highly
stiff problem and compared the result with (Kamo et al., 2018).
The new method gives a minimal error. Furthermore, we also
solve an application problem in physical sciences and
engineering namely Mass Spring Motion in other to examine the
usefulness and applicability of the new method. We present the
numerical results and comparison of the absolute error with
(Skwame et al., 2018) using the same values of h in tables 4a
and 4b respectively. It is very obvious that the new method is
advantageous over other existing methods who solved the same
problems in the literatures.

5. Conclusion

This study develops a one-step implicit hybrid block technique
for numerical solution of second order ODEs with initial value
problems. The new method developed via interpolation and

collocation techniques, is of order, p =8. It was found to be

zero-stable, consistent, and convergent. It also gives precise
results that outperform existing methods in the literature in terms
of absolute error. The performance of the new method was found
when the method was applied on some second order IVP which
includes Stiefel and Bettis equation, linear and stiff second order
IVP and a real-life application problem arising from mass spring
motion. The major contributions to knowledge from this
research are: (i) a new one-step hybrid block method with six
hybrid points was developed (ii) the method satisfies all
conditions for the basic properties of a linear multistep method
(iii) the method solves second order IVP directly thereby
removing the stress and setbacks associated with the reduction
approach and (iv) the developed method produced more accurate
results than current methods when used to solve some second
order IVP.
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